Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (9): 26-31.doi: 10.3969/j.issn.2097-0706.2023.09.004
• Energy Storage Technology • Previous Articles Next Articles
WAN Mingzhong1(), WANG Yuanyuan2, LI Jun1, LU Yuanwei2,*(
), ZHAO Tian2, WU Yuting2
Received:
2023-06-05
Revised:
2023-07-01
Published:
2023-09-25
Supported by:
CLC Number:
WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.09.004
Table 1
Summary of typical supplementary combustion compressed air energy storage power plants[11????-16]
项目名称 | 投运或建设时间 | 功率/MW | 储气装置 | 效率/% |
---|---|---|---|---|
德国Huntorf电站 | 1978年 | 290 | 地下600 m盐穴 | 44~46 |
美国Alabama州 McIntosh电站 | 1991年 | 110 | 地下450 m盐穴 | 52~54 |
美国Ohio州压缩空气储能电站 | 2001年 | 2 700 | 地下670 m洞穴 | — |
日本上砂川町电站 | 2001年 | 2 | 地下450 m废弃煤矿坑 | <40 |
Table 3
Summary of domestic and foreign non- supplementary combustion compressed air energy storage projects[16,18??????-25]
项目地点 | 功率/MW | 储存容量/(MW·h) | 储气装置 | 效率/% | 投运或建设时间 |
---|---|---|---|---|---|
德国Adele电站 | 90 | — | 地下盐穴 | 60.0~70.0 | 2010年 |
安徽芜湖 | 0.5 | 0.5 | 储罐 | 33.3 | 2014年 |
河北廊坊 | 1.5 | — | 储罐 | 52.1 | 2013年 |
贵州毕节 | 10 | 40 | 储罐 | 60.2 | 2016年 |
江苏金坛 | 60 | 300 | 地下盐穴 | 61.2 | 2021年 |
河北张家口 | 100 | 400 | 储罐 | 70.5 | 2022年 |
湖北应城 | 300 | 1 500 | 盐穴 | — | 建设中 |
山东泰安 | 350 | 1 400 | 盐穴 | — | 已开工 |
甘肃酒泉 | 300 | 1 800 | 人工硐室 | — | 已开工 |
辽宁朝阳 | 300 | 1 200 | 人工硐室 | — | 完成可研 |
[1] | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科版), 2021, 21(3):1-15. |
HU Angang. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology(Social Sciences Edition), 2021, 21(3):1-15. | |
[2] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J/OL]. 综合智慧能源:1-11.(2023-06-15)[2023-07-01]. http://kns.cnki.net/kcms/detail/41.1461.TK.20230615.1036.002.html. |
TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality[J/OL]. 综合智慧能源:1-11.(2023-06-15)[2023-07-01]. http://kns.cnki.net/kcms/detail/41.1461.TK.20230615.1036.002.html. | |
[3] | 谢彦祥, 肖汉, 夏雪, 等. 碳中和目标下中国碳减排路径及建议[J]. 电工电气, 2022(5):1-7. |
XIE Yanxiang, XIAO Han, XIA Xue, et al. China's carbon emission reduction paths and suggestions under the carbon neutrality target[J]. Electrotechnics Electric, 2022(5): 1-7. | |
[4] | 电力规划设计总院. 中国能源发展报告2020[M]. 北京: 人民日报出版社, 2021. |
[5] |
李华, 郑洪纬, 周博文, 等. 综合智慧能源系统中抽水蓄能电站两部制电价研究[J]. 综合智慧能源, 2022, 44(7):10-18.
doi: 10.3969/j.issn.2097-0706.2022.07.002 |
LI Hua, ZHENG Hongwei, ZHOU Bowen, et al. Two-part tariff for pumped storage power plants in an integrated intelligent energy system[J]. Integrated Intelligent Energy, 2022, 44(7):10-18.
doi: 10.3969/j.issn.2097-0706.2022.07.002 |
|
[6] | 衣传宝, 杨黎明, 罗艳, 等. 基于抽水蓄能的新型电力系统惯量优化控制方法[J]. 可再生能源, 2023, 41(4):530-537. |
YI Chuanbao, YANG Liming, LUO Yan, et al. Lnertia optimization control method of new power system based on pumped storage[J]. Renewable Energy Resources, 2023, 41(4):530-537. | |
[7] | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3):1052-1076. |
CHEN Haisheng, LI Hong, MA Wentao, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3):1052-1076. | |
[8] | 梁银林, 刘庆, 钱勇, 等. 压缩空气储能系统研究概述[J]. 东方电气评论, 2020, 34(3):82-88. |
LIANG Yinlin, LIU Qing, QIAN Yong, et al. Research overview of compressed air energy storage system[J]. Dongfang Electric Review, 2020, 34(3):82-88. | |
[9] | 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4):1-7. |
ZHANG Weiling, GU Han, ZHANG Chao, et al. Technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4):1-7. | |
[10] | 郭丁彰, 尹钊, 周学志, 等. 压缩空气储能系统储气装置研究现状与发展趋势[J]. 储能科学与技术, 2021, 10(5):1486-1493. |
GUO Dingzhang, YIN Zhao, ZHOU Xuezhi, et al. Status and prospect of gas storage device in compressed air energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5):1486-1493. | |
[11] |
LIU J L, WANG J H. A comparative research of two adiabatic compressed air energy storage systems[J]. Energy Conversion and Management, 2016, 108:566-578.
doi: 10.1016/j.enconman.2015.11.049 |
[12] |
SCIACOVELLI A, LI Y L, CHEN H S, et al. Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage-link between components performance and plant performance[J]. Applied Energy, 2017, 185:16-28.
doi: 10.1016/j.apenergy.2016.10.058 |
[13] |
CHEN L X, HU P, ZHAO P P, et al. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector[J]. Energy Conversion and Management, 2018, 158:50-59.
doi: 10.1016/j.enconman.2017.12.055 |
[14] |
LUO X, WANG J H, MARK D, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137:511-536.
doi: 10.1016/j.apenergy.2014.09.081 |
[15] | MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage;technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33:532-545. |
[16] | 梅生伟, 薛小代. 压缩空气储能与可再生能源的综合利用[J]. 系统与控制纵横, 2016(1):54-63. |
MEI Shengwei, XUE Xiaodai. Comprehensive utilization of compressed air energy storage and renewable energy[J]. All About Systems and Control, 2016(1):54-63. | |
[17] | 梅生伟, 薛小代, 陈来军. 压缩空气储能技术及其应用探讨[J]. 南方电网技术, 2016, 10(3):11-15. |
MEI Shengwei, XUE Xiaodai, CHEN Laijun. Discussion on compressed air energy storage technology and lts application[J]. Southern Power System Technology, 2016, 10(3):11-15. | |
[18] | WANG J D, MA L, LN K P, et al. Current research and development trend of compressed air energy storage[J]. Systems Science & Control Engineering, 2017, 5(1):434-448. |
[19] | 梅生伟, 张通, 张学林, 等. 非补燃压缩空气储能研究及工程实践——以金坛国家示范项目为例[J]. 实验技术与管理, 2022, 39(5):1-8,14. |
MEI Shengwei, ZHANG Tong, ZHANG Xuelin, et al. Research and engineering practice of non-supplementary combustion compressed air energy storage—Taking Jintan national demonstration project as an example[J]. Experimental Technology and Management, 2022, 39(5):1-8,14. | |
[20] |
BUDT M, WOLF D, SPAN R, et al. Compressed air energy storage—An option for medium to large scale electrical-energy storage[J]. Energy Procedia, 2016, 88:698-702.
doi: 10.1016/j.egypro.2016.06.046 |
[21] |
BAI J Y, WEI W, CHEN L J, et al. Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation[J]. Energy, 2020, 206:118051.
doi: 10.1016/j.energy.2020.118051 |
[22] | MEI S W, WANG J J, TIAN F, et al. Design and engineering implementation of non-supplementary fired compressed air energy storage system:TICC-500[J]. Science China(Technological Sciences), 2015, 58(4):600-611. |
[23] |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J]. Applied Energy, 2017, 199:96-106.
doi: 10.1016/j.apenergy.2017.04.068 |
[24] |
GUO H, XU Y J, CHEN H S, et al. Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system[J]. Energy, 2018, 143:772-784.
doi: 10.1016/j.energy.2017.10.132 |
[25] | 薛小代, 陈晓弢, 梅生伟, 等. 采用熔融盐蓄热的非补燃压缩空气储能发电系统性能[J]. 电工技术学报, 2016, 31(14):11-20. |
XUE Xiaodai, CHEN Xiaotao, MEI Shengwei, et al. Performance of non-supplementary fired compressed air energy storage with molten salt heat storage[J]. Transactions of China Electrotechnical Society, 2016, 31(14):11-20. | |
[26] |
NA H Y, ZHANG C C, WU Y T, et al. Investigation on thermal performance of eutectic binary nitrate-carbonate molten salt under thermal shock condition[J]. Solar Energy Materials and Solar Cells, 2023, 255:112314.
doi: 10.1016/j.solmat.2023.112314 |
[27] |
SANG L X, LV X Y, WU Y T. NaNO3-KNO3-KCl/K2CO3 with the elevated working temperature for CSP application:Phase diagram calculation and machine learning[J]. Solar Energy, 2023, 252:322-329.
doi: 10.1016/j.solener.2023.02.009 |
[28] | 万明忠, 纪文栋, 商浩亮, 等. 压缩空气储能地下盐穴物探关键问题及处理技术[J]. 南方能源建设, 2023, 10(2):26-31. |
WAN Mingzhong, JI Wendong, SHANG Haoliang, et al. Key problems and techniques of geophysical exploration in underground salt cavern for compressed air energy storage[J]. Southern Energy Construction, 2023, 10(2):26-31. | |
[29] | 万明忠, 王辉, 纪文栋, 等. 压缩空气储能电站盐穴选址关键流程及控制因素[J]. 电力勘测设计, 2022(12):1-4,41. |
WAN Mingzhong, WANG Hui, JI Wendong, et al. Critical process and controlling factor of salt cavern site selection in compressed air energy storage power station[J]. Electric Power Survey & Design, 2022(12):1-4,41. | |
[30] | 央广网. 总投资超200亿中国能建辽甘两地重点项目集中开工[EB/OL].(2022-12-21)[2023-06-05]. https://www.sohu.com/a/619585957_362042. |
NewsCNR. Concentrated construction of key projects in Liaoning and Gansu provinces with a total investment of over 20 billion yuan by China Energy Construction Corporation[EB/OL].(2022-12-21)[2023-06-05]. https://www.sohu.com/a/619585957_362042. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[4] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[5] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[6] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[7] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[8] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[9] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[10] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[11] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[12] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[13] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[14] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[15] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||